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Abstract 
As datasets grow beyond the gigabyte scale, there is an 
increasing demand to develop techniques for dealing/interacting 
with them.  To this end, the DataFoundry team at the Lawrence 
Livermore National Laboratory has developed a software 
prototype called Approximate Adhoc Query Engine for 
Simulation Data (AQSim).  The goal of AQSim is to provide a 
framework that allows scientists to interactively perform adhoc 
queries over terabyte scale datasets using numerical models as 
proxies for the original data.  The advantages of this system are 
several.  The first is that by storing only the model parameters, 
each dataset occupies a smaller footprint compared to the 
original, increasing the shelf-life of such datasets before they 
are sent to archival storage.  Second, the models are geared 
towards approximate querying as they are built at different 
resolutions, allowing the user to make the tradeoff between 
model accuracy and query response time.  This allows the user 
greater opportunities for exploratory data analysis.  Lastly, 
several different models are allowed, each focusing on a 
different characteristic of the data thereby enhancing the 
interpretability of the data compared to the original.   The focus 
of this paper is on the modeling aspects of the AQSim 
framework. 
 
1. Introduction 
Advances in computer technology and decreasing hardware 
costs have facilitated the ease by which large volumes of data 
are measured, generated, and stored. While this is viewed as 
an information bonanza, the result has often been a flood of 
data with limited means of making effective use of it.  The 
central problem is that of size.  When datasets reach the 
gigabyte level and beyond, storing the information as well as 
being able to interact with it become increasingly constrained 
in space or time or in some cases both.  While research is 
being conducted in developing mass storage devices, there 
will always be limited resources to accommodate the 
dataflow.  A related issue is that of data compression as 
ideally one would like to store as minimal information as 
possible to maximize the effectiveness of the hardware.   But 
even if the spatial constraints are resolved, the issue of how to 
interact with the data within a reasonable period of time still 
remains.  Data analysis tasks such as asking an ad-hoc query 
become ineffective for large scale data sets if the time to find 
and retrieve the exact answer to the query posed is often 
longer than the user is willing to tolerate.  This is especially 
true if the scientist is in an exploratory data analysis mode and 
has several questions that they would like to examine.   

To deal with time constraint problem, one approach that has 
been used recently is approximate querying systems, which 

seek not to provide an exact solution to the posed query but an 
approximate one.  The rational is that the user may prefer a fast, 
approximate answer as they explore the dataset to develop a 
better understanding of truly interesting queries and/or regions. 
To this end, Acharya, et.al., 1999, Acharya, et.al., 1999a, 
Chakrabarti’s, et.al., 2000, Ioannidis and Poosala (1999), Vitter 
and Wang (1999), Vitter and Wang (1998) have developed 
different approaches for dealing with aggregate and range 
queries in an approximate fashion. 

However, the emphasis in the above approaches focused on 
the issue of a fast query response system and did not 
specifically address the issue of storing such large data sets.  
This latter point is important if the user should wish to revisit 
the data set which, owing to its size, will often have to be 
moved to tertiary storage as is often the case with scientific 
simulations.   Accessing the data at such locations is often 
prohibitive time-wise and should be avoided if possible.  As a 
result, what is needed is a system that not only allows 
approximate ad hoc queries but also provides a compact 
representation of the data that is far easier to store and access 
compared to the original.  A survey of the literature uncovers 
that Hachem, et.al. (1995) have implemented a system where 
polynomial regression models are used to model non-spatial 
data and the regression coefficients are stored in the database.  
In response to a query, the data are reconstructed from models.  
Such a system provides the benefits of approximate query 
response but at a far smaller storage cost. 

Following a similar approach independently, the 
DataFoundry team at Lawrence Livermore National Laboratory 
has developed the Approximate Ad-hoc Query Engine for 
Simulation Data (AQSim).  The goal of AQSim is to provide a 
software framework that not only allows relatively fast 
interactive adhoc query capability of terabyte scale data but 
also provides a compact representation of the data.  This is 
achieved by constructing mathematical models of the data at 
different resolutions.  In effect, these models act as data 
“proxies” and perform in their place in response to a query 
submission.  This has several benefits.  First, the different 
resolutions of the data allow the user to trade off time for 
accuracy.  Second, along with an index file, only the model 
parameters are stored in a file.  As this number is often smaller 
than the original dataset size, the shelf-life of the dataset can be 
extended.  The user can send the original data to archival 
storage but can query using the model parameters for data 
reconstruction.  Finally, as mathematical models often 
characterize different facets of the data, the model parameters 
themselves may provide additional insights not apparent when 
just dealing with the original raw values.  Thus, in contrast to 
Hachem, et.al.’s work where only one model is used to address 
the different query needs of the scientists, AQSim uses multiple 
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models.  While AqSim is built for dealing with the spatio-
temporal nature of the scientific simulations for the Accelerated 
Strategic Computing Initiative program (ASCI), the framework 
is generic enough to be applied to other domains that deal with 
terabyte scale datasets. 

In this paper the focus is on the modeling aspect of the 
AQSiM framework.  Section 2 provides a brief overview of the 
entire system.  Section 3 discusses the modeling issues that 
need to be addressed.  Current results of AQSiM are presented 
in Section 4.  Finally, conclusions and future work are 
discussed in Section 5. 
 

2. AQSim Framework 
Figure 1 shows the AQSim framework under construction.  The 
system is divided into two phases: preprocessing and query 
processing.  The goal of the first phase is to take the original 
data and build the model files and index structures necessary to 
support the query processing step which follows it.  As the 
focus will be on developing a compact and accurate data proxy, 
more time and computational effort is placed in this initial 
period.  The rational is to concentrate the computational burden 
when the data is close at hand and still away from the user.  In 
this way, the time spent during query processing which is 
where the user is expected to spend the bulk of their time can 
be minimized. The input to the preprocessing will be the 
original data itself, the selection of models to be implemented, 
and a partitioning scheme.   

To achieve the approximate query answer capability, the 
data is statistically characterized and modeled at different 
resolutions.  These resolutions are created by partitioning the 
data into progressively smaller subunits and then subsequently 
modeling each of these partitions by the selected models. This 
procedure is repeated until the partitioning reaches a selected 
threshold upon which it is terminated.  The current partitioning 
scheme is bisect the data along each of the spatio-temporal 

coordinates (x,y,z,t), thereby creating a 16-way tree.  The 
rational was to take advantage of the spatio-temporal nature of 
the scientific simulations that were being studied. In any event, 
the end result is a tree structure.  The root node represents the 
entire data set with each of its children (and subsequent 
children) representing a different subset of the data.  Each node 
contains the following statistics about the data that was in it: 
number of data points, number of models built on the data in 
that node, the types of models used, model errors, and for each 
variable, its corresponding mean, standard deviation, minimum 
and maximum values.  As will be discussed later, this 
information will be used by the index searcher when searching 
for a response to a query.  

 If directly implemented as stated above, one problem that is 
immediately encountered is that is it unlikely that a model built 
with a majority of the data is accurate or that it can be built in a 
reasonably short time.  Hence, to balance the time-accuracy 
tradeoff, the key is to fix the model complexity for each node.  
The supposition is that as the data becomes increasingly 
partitioned, the localization will increase the likelihood that a 
model of fixed complexity will be able to model the behavior 
reasonably well.  A comparable analogy is to break a nonlinear 
curve into piece-wise components which depending on the 
length of the component can be sufficiently linear for linear 
regression models to be built on the components.  Naturally, 
there is no guarantee that the accuracy will reach what is 
desired but this combination of partitioning and modeling is 
being used to a first approximation.  As will be discussed in 
Section 5, identifying metrics as to when to build models as 
opposed to having them built at every node is a research topic.  
If such a metric is found, it can decrease storage and 
computational costs of building models to only those that are 
needed. 

Once the partitioning and model building is done, the output 
from the preprocessing stage is an index file containing all the 
node information along with the corresponding model files.  It 
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Figure 1.  Framework for AQSim. 
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is important to note the original data is not stored in either the 
index or model files.  The nodes only contain the information 
listed above along with pointers to its children.  The model files 
only contain information about the model parameters that were 
used for each node.  Hence, it is hoped that these subsequent 
files will be smaller in size than the original data.  So, if a 
particular section of the data is to be reconstructed one needs to 
know which node and which model to use to reconstruct that 
particular subsection. 

The query processing phase is the side that deals primarily 
with the user and is the means by which they present queries to 
the system.  After the index and model files have been 
initialized and read in by the system, the user can pose adhoc 
queries to the query engine.  The query engine then identifies 
the variables and predicates in the query and selects an index to 
use based on the metadata.  An index searcher then examines 
the index nodes using the statistical information contained 
within them to determine which nodes (and models) are most 
relevant to the query.  A list of candidate nodes is then sent to a 
predicate processor/data value reconstructor, which then 
reconstructs the data and formulates a response.  During this 
period, the user can specify the accuracy of the response and 
this information will be used to determine how deep within the 
tree to search.  Once the data has been reconstructed it is then 
sent to a visualization tool to view the results. 
 

3. Modeling Issues 
 As the models act as proxies for the data, it is essential that a 
set of criteria or metrics be developed to assess the feasibility of 
using a particular model for the AQSim system.  Initially, our 
focus was on traditional modeling criteria such as model error 
and complexity as these are often used to assess model 
performance.  Unfortunately, due to the scale of the data 
involved and the tight coupling with respect to queries, these 
criteria were found not to be particularly informative.  For 
example, model error as a measure of model accuracy was 
relevant but its importance was somewhat reduced to due to the 
multiresolutional structure of the tree which reconstructs the 
data, in principle, at a higher accuracy (baring overfitting) as 
the leaves of the tree are approached.  But as this is 
nevertheless an important measure, mean square error or root 
mean square error was selected as a model error metric to 
establish a standard.   

Similarly, model complexity was also viewed at first as 
important but oftentimes metrics such as Akaike or Bayes 
information criteria are often used to compare among a set of 
models, balancing model simplicity with error, Myung (2000).  
The drawback was that the size of the datasets precludes the 
building of several models or even iterating over the same 
model to obtain a better fit.   

As such, a new set of criteria has been developed focusing 
primarily on the computational and storage cost of building 
models as well as examining their applicability for dealing with 
various query types.  The former has been simply termed as 
model building whereas model queryability is used for the 
latter. 
 
3.1. Model building 
Here, the goal is to assign some semi-quantitative measure to 
how computational expensive building a model can be as well 
as the associated cost of storing the model parameters.  Assume 
that yi is the ith variable of the original data and xi is a vector of 
independent variable(s) associated with yi.  xi is denoted as a 

vector to emphasize generic-ness.  X can be another variable in 
the data set (univariate model), a collection of other variables 
(multivariate model), or simply an index.  With this in mind, 
the model is formulated as such: 

);( iii fy θx=        (1) 
where f denotes the model itself and θθθθi is a vector of model 
parameters (coefficients) 

The computational cost of building the model (equation 1) 
per node is expressed in big O-notation (Cormen, et.al., 1998): 

O(F(n)) + r*O(G(n))      (2) 
where n represents the number of samples in a given node, 
O(F(n)) represents the cost of building the initial model where 
F(n) also includes any model specific preprocessing steps, r is 
the number of steps needed to refine the model to either a 
desired level of complexity or error ( r > 0), O(G(n)) is the cost 
of the model refinement steps where G(n) represents the 
functional form of the cost as a function of the number of 
samples.  G(n) may be the same as F(n) or functionally 
different.  F(n), G(n) represent the generic function forms. (eg. 
they can be n, nlogn, n2, etc).  The term “r” encapsulates the 
iterative nature of the refinement process dealing with issues 
such as increasing the number of knots in a B-spline or the 
processing steps for determining the appropriate wavelet 
coefficient threshold values to achieve a target error.  If the user 
desires a more accurate model, the price is the additional 
computational time required to refine the model. 

Once the model has been built, there is the issue of the 
storage size of the model.   The storage cost per index tree 
node, s, can be estimated as 

s = p * v + i         (3) 
where i is the size of index mapping, v is the number of 
variables, and p is the parameter size per variable, which is the 
size of θθθθi (number of coefficients, for example) multiplied by 
the size of the data type used (e.g., integer, float, double). In 
general, the parameter size cannot be readily estimated since it 
is dependent on the data distribution and the level of error 
specified.  However, if the model complexity is set, the size can 
be estimated as the user explicitly limits the number of 
parameters per variable.  Finally, the index mapping may or 
may not exist depending on the model type but is presented for 
completeness.  It represents any additional bookkeeping that 
may be required to reconstruct the data. 
 
3.2. Model building trade-offs 
The above presents a formalism to estimate the cost of model 
construction in both memory and computation.  The following 
general observations can be made: 
•  As partitioning occurs, n becomes smaller so the 

computational cost goes down although functionally 
equation 2 remains the same. 

•  If lower modeling error is desired, this usually translates 
into an increase in r of equation 2 -- increasing the number 
of iterations to bring the model to convergence.  θθθθi is also 
likely to increase (but not always) in size as additional 
parameters are needed to bring the model to target error 
levels.  Depending on the modeling algorithm used, the 
number of iterations and the parameter size may or may 
not be tied with each other.  In the case of regression, 
additional model terms are introduced to reduce model 
error so the iteration and parameter size are linked.  On the 
other hand, with neural networks, the weights of system do 
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not change in number but their values are adjusted with 
each iteration cycle. 

To summarize, to assess the full impact of model building, the 
following need to be known: 
•  Initial model cost – O(F(n))  
•  Model refinement cost – O(G(n))  
•  Model complexity (related to error as well) – this sets r 

and size of θθθθi 
•  Bookkeeping – is it needed and if so how big 
Once this is known, equations 2 and 3 can be used to estimate 
cost and storage requirements on a per node basis for a given 
model.  This information then forms a basis by which different 
models can be compared on a model construction/memory 
storage criteria. To consider the effect of the entire data set, 
multiply the above estimates (equations 2 and 3) by the number 
of nodes in the index tree and adjust for n in the different nodes.   
 
3.3. Model queryability 
As mentioned previously it is not sufficient that the model 
simply reconstruct the data to within a small error as the nature 
of the gigabyte+ scale data make build such models 
computationally expensive.  Ideally the most useful models are 
the ones that not only reconstruct data well but are amenable to 
dealing with a variety of queries.  It is this issue of 
“queryability” that will be discussed in this section.   

In brief, queryability considers the question “Short of 
reconstructing the data, how can the model structure of 
functionality be used to answer the query?”  All the models in 
AQSim have the capability of reconstructing the data to varying 
degrees of accuracy.  However, some models will capture 
different aspects of the data structure in their formulation than 
others.  For example, with the case of simple linear regression 
of y = mx + b the parameter m contains information on the rate 
of change of y with respect to x.  This ease of information 
access is what needs to be characterized in order to effectively 
determine which model to use to answer a query.   Ideally, the 
goal is to arrive at a mapping that would associate particular 
models to certain query types.  To achieve this, a set of criteria 
is needed to assess the feasibility of different model types in the 
context of the queries that may be presented.  

As AQSim will incorporate multiple models, understanding 
the applicability or relevance a particular model may have in 
the context of responding to a query is essential.  A survey of 
the literature does not reveal any type of model/query 
association metrics and points to a need to develop one for this 
system.  In addition, considering the variety and complexity of 
queries that may be asked, it is unlikely that a single 
quantitative metric can be arrived to measure queryability.  
Instead, it may be more feasible to break the assessment into 
“semi-qualitative” and “semi-quantitative” components.  The 
former focuses on breaking down the query types into different 
categories such as the one listed below. (This is a rough list and 
not meant to be exhaustive or mutually exclusive) 

1) range – for a given input, find the associated output 
2) aggregate – find how many data samples satisfy a 

given query predicate 
3) scale-dependent patterns/ “dynamicity” – find similar 

types of behavior at the specified scale 
4) topological – find the samples that are within a 

specified target range 
5) variable interactions – find the data samples that satisfy 

the specified variable relationships 

6) area/volume effects – find the area or volume for a 
particular variable condition 

7) domain-specific – user defines a function of interest in 
the query predicate 

Each model candidate is “graded” on their ability to deal 
with the different categories, specifically whether they are able 
to address such queries (apart from brute force data 
reconstruction) and how accurately.  An additional 
consideration may be to assign a weight to the different query 
types as to how likely they are to occur and/or how important 
they are.  Ideally, the models that are selected for the AQSim 
should be complementary with respect to each other to 
minimize redundant coverage.  In this regard, models that are 
domain-specific probably should probably be always included 
since it is assumed that their construction contains domain-
relevant information, which would not to be readily available 
from the original data.  But again this need may have to be 
balanced with respect to how often would that kind of 
information is requested.  The semi-quantitative aspect may be 
viewed as the number of data processing steps and/or 
computational time required to process the model to arrive at 
the desired output.  For example, if the query is of a range type, 
specifically “Find all x for this value of y” and two models exist 
-- one model is that of a spline regression (y = f(x)) and the 
other is a wavelet (x = f(i), y = f(i)), estimating how long would 
it take each model to arrive at an answer is an interesting 
metric.  The former would require solving for the roots of the 
polynomial whereas the wavelets may simply reconstruct all the 
data for given range and then apply a filtering operation to 
isolate the relevant answers.  It should be emphasized that this 
type of analysis is semi-quantitative in nature since it is highly 
dependent on the distribution of the data and initial starting 
points.   
 
3.4. Model-query interaction 
This section focuses on the cost of interacting with a model to 
get the desired answer to the query. The knowledge gained here 
allows models to be compared on the basis of how 
computationally expensive they are when dealing with queries.  
Assume that the user poses the query in the form, “Given yi, 
provide h(xi).”  Again, yi denotes a variable of the original data 
set.  H(xi) is presented here as the generic output needed to 
answer the query.  In its simplest form, h(xi) = xi where xi is 
similar to the one used in equation 1 with the focus on either a 
single original variable or a collection of variables (since the 
index is not part of the original data the user is not likely to 
make any inquiries about it).  In a more advanced form, h(xi) 
may be a user-defined function that uses as input xi.  To answer 
the query (find h(xi) for yi), the procedure is to start with what 
the model provides and then process the results until the desired 
information becomes available.  This cost of answering a query 
essentially can be estimated by equation 4 (Corman, et.al., 
1998): 

∑∑
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where m = number of processing steps required, O(fi(n)) is the 
computational cost associated with each processing step i, n = 
number of samples.  It is assumed that the processing costs are 
linearly additive. The key lies in what is meant by a processing 
step.  Consider that there exists a model for a single variable, x 
= f(i) where i is an index, and another model for a different 
variable, y = g(j)  where j is a different index.  For a “Find the x 
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associated with y,” this would require creating or learning the 
mapping between i and j, say i = m(j), if the appropriate x-y 
pairs are to be uncovered.  This mapping would be a processing 
step in addition to the one where for the given y, the j’s would 
have to be generated, j = g-1(y), – another processing step.  The 
cost of answering the queries requires both steps be processed. 

As another example, assume that xi of equation 1 is some 
multivariate collection and again the query is “Find the xi 
associated with yi.”  This can be answered by solving the 
inverse of equation 1 and, for illustrative purposes, it is further 
assumed that this is O(n2) : 

)(1
iyf −=ix   (5) 

This is not the only approach to solving the problem.  A naïve 
but simple alternative would be to reconstruct the data for all 
available yi and shift through to look for the xi’s of interest.  
Assume for the sake of argument that this is of O(nlogn) for the 
generation and O(nlogn) for the shifting.  Now, it is not clear as 
to which approach, the solver or the naïve one, is better.  The 
solver has one processing step but it is computationally 
expensive.  The naïve way involves two steps but individually 
they are not as expensive.  So, depending on which route, as 
well as the sample size involved, the cost can vary.  So, 
equation 4 should be evaluated on both routes to obtain an 
estimate of the cost with the goal of selecting the processing 
route that is cheaper.  Given two models, it is important to 
determine how much it would cost to use one model over 
another by breaking it down to the number of processing steps 
required to generate the appropriate response, and the cost 
associated with each step for each model.  The final decision 
based on choosing the lesser total of the two. 

Note that this analysis can be expanded to go further than 
just finding xi but can also consider the cost of generating h(xi).  
The formulation of equation 4 is such that it can be used to 
evaluate model performance against a range of query types.  
This is done by the formulation of h(xi).  For range queries, it 
may be sufficient to have h(xi) = xi.   To examine how they fare 
on topological queries, choose the appropriate h(xi) and then 
estimate the costs.  This analysis, however, is not complete 
because recall the model also has θθθθI’s.  While the emphasis has 
been on largely obtaining h(xi) from xi, it is possible that the 
parameters themselves readily lend to h(xi) and this should be 
considered when evaluating a model.  For example, 
“dynamicity” is reflected in the wavelet coefficients, while 
information such as rate of change can be observed in the 
coefficients of linear regression models.  Note, equation 4 
simply focuses on the processing steps but is not concerned 
whether they involve parameters or xi’s. The complementary 
criteria to the model building described in section 3.1 is to then 
select the model with the lowest cost for a desired query type or 
types.   

In summary, for each model under consideration, it is 
recommended to first use equations 2, 3, and 4 to assess the 
computational cost and memory needs as the model is used 
against different query types (if applicable).  Note, that these 
equations have some adjustable parameters, such as m and r, 
and these will depend on the accuracy sought and the query 
being asked. In general, the model that has the lowest cost in 
computation and memory for a given query is a strong viable 
candidate.  This analysis has not considered tree search costs 
since this cannot be determined from the model structure itself 
but may prove to be substantial for some models (to obtain a 
target accuracy) compared to others.  The final assessment 
should also consider this search cost as well once the index 

searching protocol has been finalized.  In short, a model that 
answers the query of interest with minimal total computational 
cost and memory is a strong candidate to be considered for 
AQSim. 
 

4. Results 
Below is an illustration for a simple wavelet (finite length) 
model and a statistical model using the mean as the model 
using the criteria discussed in section 3. The results have been 
broken into model building and model-query interaction and, 
for the latter, with some selected query types of interest and the 
memory usage. 
 
4.1. Model building 
Modeling building incurs the following computational cost. 

wavelet      stat 
2*O(n) + O(n ln n)  N*O(n)  

Here, the cost for the wavelets includes the cost of scanning 
through the data (a conservative high estimate is presented) and 
the need to cull the wavelet coefficients to obtain a target error.  
The scanning considers the cost of the downsampling when 
performing the wavelet decomposition.  Note that, as the 
wavelet model is inherently multiresolutional, it can in theory 
just work on the parent node and achieve a high level of 
accuracy.  As to the statistics model, the large N refers to the 
total number of nodes in the index tree.  To achieve a desired 
level of accuracy, the data will be partitioned to the resolution 
that is desired.  If the data is widely distributed or high 
precision is requested, N can approach or exceed n in value.  
The reason is that if each leaf node is believed to contain a 
single point then minimum N = n, but as this is only the leaves 
and not the rest of the tree, N>n. 
 
4.2. Model-query interaction 
The following three query cases provide an overview of the 
computational cost the two models incur when queried.    

Range query: 
wavelet model    stat model 
O(n) + O(n)      O(ln N)  
reconstruct/filter    find relevant input 

In the case of the wavelet, the extreme case is considered where 
the entire data is reconstructed and then filtered upon to find the 
values of interest.  To simplify the analysis, only filtering was 
considered.  (It is possible to have the wavelet reconstruct 
selected areas of the data ,but this would be covered by the 
bookkeeping and its function form is not clearly known for the 
purposes of this exercise.)  It may be possible to shorten this to 
O(d) where d << n if a mapping can be achieved by linking the 
distribution of the data values to particular wavelet coefficients.  
For the statistics model, the cost is largely in searching a tree of 
N nodes to find the model values that satisfy the query. 

Dynamicity query: 
wavelet model    stat model 
O( ln C)      O(n) + O(G(n)) 

Since the wavelet models stores information about the 
dynamicity (variable activity) in the wavelet coefficients ,this 
would simply be a search over these model parameters, C – 
number of wavelet coefficients.  For the case of statistical 
model, it would require a reconstruction of the data followed by 
further processing of the data to define the dynamicity function.  
If something aside from standard deviation is desired, this can 
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be costly.  For example, G(n) = n2 for considering pair-wise 
interactions. 

Topological query: 
wavelet model    stat model 
O(n) + ΣO(G(n))   m*O(ln N) + ΣO(G(n)) 

The primary cost of the wavelet lies in reconstructing the data 
and then building the necessary topological function, 
designated by the summation term.  For the statistics model, the 
cost lies in finding all the relevant nodes m and searching 
through a tree of N nodes.  Once the data is obtained there is 
the issue of building the topological function just as in the 
wavelet case.  

In general the wavelet model is advantageous because of the 
ease by which the data can be reconstructed to a high level of 
accuracy.  For the statistics model, there is the cost of searching 
through the index tree but its accuracy is unlikely to match that 
of the wavelet system unless a large index tree is created in 
which case N (nodes) can be greater than n (number of samples 
in original data).  

The two models use the following memory space per 
variable. 

wavelet model    stat model 
C  + n       2* N 

For the case of the wavelets, C represents the number of 
coefficients stored for a given level of accuracy and the n is to 
indicate the size of the index bookkeeping where n is the 
number of samples in the original data.  In a worse case 
scenario this would represent the mapping between unique data 
values and the coefficients.  If there are redundant values, it 
may be possible to reduce n considerably.  Furthermore, if a 
common index scheme is used, then only one bookkeeping 
system may be required as opposed to one per variable. This 
would reduce storage costs considerably. As for the statistics 
model, only two parameters are needed the mean and standard 
deviation, hence the number 2.  N refers to the number of nodes 
in the index tree.  Again if high precision is requested, N can 
reach or exceed n as the mean’s ability to accurately reflect the 
data increases as the partition size becomes increasingly 
localized. 

In summary, while the actual performance does vary 
depending on the data distribution, it appears that if high 
accuracy is desired N>>n, then a wavelet model would be 
useful for most of the applications otherwise a statistics model 
will do. 
 

5. Conclusions and Future Work 
The current implementation of AQSim only has a statistical 
mean as a model but it is being upgraded to incorporate a 
wavelet model to provide additional functionality.  Additional 
work will also be done in the areas of index construction for 

high multidimensional data, partitioning schemes beyond the 
spatio-temporal bisection currently in place, mapping of 
model metadata to query types, and a metric to build models 
selective.  The significance of the last point is many modeling 
techniques are computationally intensive to build, for 
example, O(n3) for regression based systems.  As there is no 
guarantee that for given data distribution the resulting model 
will produce a highly accurate model, a metric is needed to 
guide when a model has a reasonable chance of successful 
reconstruction.  If the model performance is going to be poor, 
it would be better to use the mean as a crude model owing to 
computational efficiency. 

 Other research areas in the context of model evaluation 
include the following: how amenable the models are to being 
parallelized, how automated the model construction can be, 
how robust the model is to dealing with different data types, 
and whether the model can be constructed online. 
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